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Abstract
Recent work has demonstrated that neural net-
works are vulnerable to adversarial examples,
i.e., inputs that are almost indistinguishable from
natural data and yet classified incorrectly by the
network. To address this problem, we study
the adversarial robustness of neural networks
through the lens of robust optimization. This ap-
proach provides a broad and unifying view on
much of the prior work on this topic. Its prin-
cipled nature also enables us to identify gen-
eral methods for both training and attacking neu-
ral networks that are reliable and, in a certain
sense, universal. These methods let us train net-
works with significantly improved resistance to a
wide range of adversarial attacks. This suggests
that adversarially resistant deep learning models
might be within our reach after all.

1. Introduction
Recent breakthroughs in computer vision and speech
recognition are bringing trained classifiers into the center
of security-critical systems. Important examples include
vision for autonomous cars, face recognition, and malware
detection. These developments make security aspects of
machine learning increasingly important. In particular, re-
sistance to adversarially chosen inputs is becoming a cru-
cial design goal. While trained models tend to be very ef-
fective in classifying benign inputs, recent work (Szegedy
et al., 2013; Goodfellow et al., 2014; Nguyen et al., 2015;
Sharif et al., 2016) shows that an adversary is often able to
manipulate the input so that the model produces an incor-
rect output.

This phenomenon has received particular attention in the
context of deep neural networks, and there is now a quickly
growing body of work on this topic (Fawzi et al., 2015;
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Kurakin et al., 2016; Papernot & McDaniel, 2016; Rozsa
et al., 2016; Torkamani, 2016; Sokolic et al., 2016; Tramèr
et al., 2017b). Computer vision presents a particularly
striking challenge: very small changes to the input image
can fool state-of-the-art neural networks with high prob-
ability (Szegedy et al., 2013; Goodfellow et al., 2014;
Nguyen et al., 2015; Sharif et al., 2016; Moosavi-Dezfooli
et al., 2016). This holds even when the benign example
was classified correctly, and the change is imperceptible to
a human. Apart from the security implications, this phe-
nomenon also demonstrates that our current models are not
learning the underlying concepts in a robust manner. All
these findings raise a fundamental question:

How can we learn models robust to adversarial inputs?

While existing attacks and defense mechanisms have had
some successes, we currently do not have a good under-
standing of the guarantees they provide. We can never be
certain that a given attack finds the “most adversarial” ex-
ample, or that a particular defense mechanism prevents the
existence of all adversarial examples. This makes it diffi-
cult to navigate the landscape of adversarial attacks or to
fully evaluate the possible security implications.

In this paper, we study the adversarial robustness of neu-
ral networks through the lens of robust optimization. We
use a natural saddle point (min-max) formulation to cap-
ture the notion of security against adversarial attacks in a
principled manner. This formulation allows us to be pre-
cise about the type of security guarantee we would like
to achieve, i.e., the broad class of attacks we want to be
resistant to (in contrast to defending only against specific
known attacks). The formulation also enables us to cast
both attacks and defenses into a common theoretical frame-
work. Most prior work on adversarial examples naturally
fits into this framework. In particular, adversarial training
directly corresponds to optimizing this saddle point prob-
lem. Similarly, prior methods for attacking neural networks
correspond to specific algorithms for solving the underly-
ing constrained optimization problem.

Equipped with this perspective, we make the following
contributions.

1. We conduct a careful experimental study of the opti-
mization landscape corresponding to this saddle point
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formulation. Despite the non-convexity and non-
concavity of its constituent parts, we find that the un-
derlying optimization problem is tractable after all. In
particular, we provide strong evidence that first-order
methods can reliably solve this problem. We supple-
ment these insights with ideas from real analysis to
further motivate projected gradient descent (PGD) as
a universal “first-order adversary”, i.e., the strongest
attack utilizing the local first order information about
the network.

2. We explore the impact of network architecture on ad-
versarial robustness and find that model capacity plays
an important role here. To reliably withstand strong
adversarial attacks, networks require a significantly
larger capacity than for correctly classifying benign
examples only. This shows that a robust decision
boundary of the saddle point problem can be signif-
icantly more complicated than a decision boundary
that simply separates the benign data points.

3. Building on the above insights, we train networks
on MNIST and CIFAR10 that are robust to a wide
range of adversarial attacks. Our approach is based
on optimizing the aforementioned saddle point for-
mulation and uses our optimal “first-order adversary”.
Our best MNIST model achieves an accuracy of more
than 89% against the strongest adversaries in our test
suite. In particular, our MNIST network is even robust
against white box attacks of an iterative adversary.
Our CIFAR10 model achieves an accuracy of 46%
against the same adversary. Furthermore, in case of
the weaker black box/transfer attacks, our MNIST and
CIFAR10 networks achieve the accuracy of more than
95% and 64%, respectively. (More detailed overview
can be found in Tables 1 and2.) To the best of our
knowledge, we are the first to achieve these levels of
robustness on MNIST and CIFAR10 against such a
broad set of attacks.

Overall, these findings suggest that secure neural networks
are within reach. In order to reliably test this claim,
we invite the community to attempt attacks against our
MNIST and CIFAR10 networks in the form of a chal-
lenge. The complete code, along with the description
of the challenge, is available at https://github.
com/MadryLab/mnist_challenge and https://
github.com/MadryLab/cifar10_challenge.

2. An Optimization View on Adversarial
Robustness

Much of our discussion will revolve around an optimiza-
tion view of adversarial robustness. This perspective not
only captures the phenomena we want to study in a precise

manner, but will also inform our investigations. To this end,
let us consider a standard classification task with an under-
lying data distribution D over pairs of examples x ∈ Rd
and corresponding labels y ∈ [k]. We also assume that we
are given a suitable loss function J(θ, x, y), for instance the
cross-entropy loss for a neural network. As usual, θ ∈ Rp is
the set of model parameters. Our goal then is to find model
parameters θ that minimize the risk E(x,y)∼D[J(x, y, θ)].

Empirical risk minimization (ERM) has been tremendously
successful as a recipe for finding classifiers with small pop-
ulation risk. Unfortunately, ERM often does not yield mod-
els that are robust to adversarially crafted examples (Good-
fellow et al., 2014; Kurakin et al., 2016; Moosavi-Dezfooli
et al., 2016; Tramèr et al., 2017b). Formally, there are ef-
ficient algorithms (“adversaries”) that take an example x
belonging to class c1 as input and find examples xadv such
that xadv is very close to x but the model incorrectly classi-
fies xadv as belonging to class c2 6= c1.

In order to reliably train models that are robust to adversar-
ial attacks, it is necessary to augment the ERM paradigm
appropriately. Instead of resorting to methods that directly
focus on improving the robustness to specific attacks, our
approach is to first propose a concrete guarantee that an ad-
versarially robust model should satisfy. We then adapt our
training methods towards achieving this guarantee.

The first step towards such a guarantee is to specify an at-
tack model, i.e., a precise definition of the attacks our mod-
els should be resistant to. For each data point x, we intro-
duce a set of allowed perturbations S ⊆ Rd that formalizes
the manipulative power of the adversary. In image classi-
fication, we choose S so that it captures perceptual simi-
larity between images. For instance, the `∞-ball around x
has recently been studied as a natural notion for adversarial
perturbations (Goodfellow et al., 2014). While we focus
on robustness against `∞-bounded attacks in this paper, we
remark that more comprehensive notions of perceptual sim-
ilarity are an important direction for future research.

Next, we modify the definition of population risk ED[J ]
by incorporating the above adversary. Instead of feeding
samples from the distributionD directly into the loss J , we
allow the adversary to perturb the input first. This gives rise
to the following saddle point problem, which is our central
object of study:

min
θ
ρ(θ) (1)

where ρ(θ) = E(x,y)∼D

[
max
δ∈S

J(θ, x+ δ, y)

]
.

Formulations of this type (and their finite-sample counter-
parts) have a long history in robust optimization, going
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back to Wald (Wald, 1939; 1945; 1992). It turns out that
this formulation is also particularly useful in our context.

First, this formulation gives us a unifying perspective that
encompasses much prior work on adversarial robustness.
Our perspective stems from viewing the saddle point prob-
lem as the composition of an inner maximization problem
and an outer minimization problem. Both of these prob-
lems have a natural interpretation in our context. The inner
maximization problem aims to find an adversarial version
of a given data point x that achieves a high loss. This is pre-
cisely the problem of attacking a given neural network. On
the other hand, the goal of the outer minimization problem
is to find model parameters so that the “adversarial loss”
given by the inner attack problem is minimized. This is
precisely the problem of training a robust classifier using
adversarial training techniques.

Second, the saddle point problem specifies a clear goal that
an ideal robust classifier should achieve, as well as a quanti-
tative measure of its robustness. In particular, when the pa-
rameters θ yield a (nearly) vanishing risk, the correspond-
ing model is perfectly robust to attacks specified by our
attack model.

Our paper investigates the structure of this saddle point
problem in the context of deep neural networks. These in-
vestigations then lead us to training techniques that produce
models with high resistance to a wide range of adversarial
attacks. Before turning to our contributions, we briefly re-
view prior work on adversarial examples and describe in
more detail how it fits into the above formulation.

2.1. A Unified View on Attacks and Defenses

Prior work on adversarial examples has focused on two
main questions:

1. How can we produce strong adversarial examples, i.e.,
adversarial examples that fool a model with high con-
fidence while requiring only a small perturbation?

2. How can we train a model so that there are no adver-
sarial examples, or at least so that an adversary cannot
find them easily?

Our perspective on the saddle point problem (1) gives an-
swers to both these questions. On the attack side, prior
work has proposed methods such as the Fast Gradient Sign
Method (FGSM) and multiple variations of it (Goodfellow
et al., 2014). FGSM is an attack for an `∞-bounded adver-
sary and computes an adversarial example as

x+ ε sgn(∇xJ(θ, x, y)).

One can interpret this attack as a simple one-step scheme
for maximizing the inner part of the saddle point formu-

lation. A more powerful adversary is the multi-step vari-
ant FGSMk, which is essentially projected gradient descent
(PGD) (Kurakin et al., 2016):

xt+1 = Πx+S
(
xt + α sgn(∇xJ(θ, x, y))

)
.

Other methods like FGSM with random perturbation have
also been proposed (Tramèr et al., 2017a). Clearly, all
of these approaches can be viewed as specific attempts to
solve the inner maximization problem in (1).

On the defense side, the training dataset is often augmented
with adversarial examples produced by FGSM. This ap-
proach also directly follows from (1) when linearizing the
inner maximization problem. To solve the simplified robust
optimization problem, we replace every training example
with its FGSM-perturbed counterpart. More sophisticated
defense mechanisms such as training against multiple ad-
versaries can be seen as better, more exhaustive approxi-
mations of the inner maximization problem.

3. Towards Universally Robust Networks?
Current work on adversarial examples usually focuses on
specific defensive mechanisms, or on attacks against such
defenses. An important feature of formulation (1) is that at-
taining small adversarial loss gives a guarantee that no al-
lowed attack will fool the network. By definition, no adver-
sarial perturbations are possible because the loss is small
for all perturbations allowed by our attack model. Hence,
we now focus our attention on obtaining a good solution to
(1).

Unfortunately, while the overall guarantee provided by the
saddle point problem is evidently useful, it is not clear
whether we can actually find a good solution in reasonable
time. Solving the saddle point problem (1) involves tack-
ling both a non-convex outer minimization problem and a
non-concave inner maximization problem. One of our key
contributions is demonstrating that, in practice, one can
solve the saddle point problem after all. In particular, we
now discuss an experimental exploration of the structure
given by the non-concave inner problem. We argue that
the loss landscape corresponding to this problem has a sur-
prisingly tractable structure of local maxima. This struc-
ture also points towards projected gradient descent as the
ultimate first order adversary. Sections 4 and 5 then show
that the resulting trained networks are indeed robust against
a wide range of attacks, provided the networks are suffi-
ciently large.

3.1. The Landscape of Adversarial Examples

Recall that the inner problem corresponds to finding an ad-
versarial example for a given network and data point (sub-
ject to our attack model). As this problem requires us to
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Figure 1. Histograms for the distribution of local maxima values
over 200 random restarts for 4 random examples of MNIST and
CIFAR10. The blue histogram corresponds to naturally training
the network, while the red one corresponds to the adversarially
trained version.

maximize a highly non-concave function, one would expect
it to be intractable. Indeed, this is the conclusion reached
by prior work which then resorted to linearizing the inner
maximization problem (Huang et al., 2015a; Shaham et al.,
2015). As pointed out above, this linearization approach
yields well-known methods such as FGSM. While training
against FGSM adversaries has shown some successes, re-
cent work also highlights important shortcomings of this
one-step approach (Tramèr et al., 2017a).

To understand the inner problem in more detail, we investi-
gate the landscape of local maxima for multiple models on
MNIST and CIFAR10. The main tool in our experiments
is projected gradient descent (PGD), since it is the standard
method for large-scale constrained optimization. In order
to explore a large part of the loss landscape, we re-start
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Figure 2. Value of loss function over PGD iterations for 20 ran-
dom restarts using a random example.

PGD from many points in the `∞ balls around data points
from the respective evaluation sets.

Surprisingly, our experiments show that the inner problem
is tractable after all, at least from the perspective of first-
order methods. While there are many local maxima spread
widely apart within xi + S, they tend to have very well-
concentrated loss values. This echoes the folklore belief
that training neural networks is possible because the loss
(as a function of model parameters) typically has many lo-
cal minima with very similar values.

Specifically, in our experiments we found the following
phenomena:

• We observe that the loss achieved by the adversary in-
creases in a fairly consistent way and plateaus rapidly
when performing projected `∞ gradient descent for ran-
domly chosen starting points inside x+S (see Figure 2).

• Investigating the concentration of maxima further, we
observe that over a large number of random restarts, the
loss of the final iterate follows a well-concentrated dis-
tribution without extreme outliers (see Figure 1; we ver-
ified this concentration based on around 105 restarts).

• To demonstrate that maxima are noticeably distinct, we
also measured the `2 distance and angles between all
pairs of them and observed distances are distributed
close to the expected distance between two random
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points in the `∞ ball, and angles are close to 90◦.

• Finally, we observe that the distribution of maxima sug-
gests that the recently developed subspace view of ad-
versarial examples is not fully capturing the richness
of attacks (Tramèr et al., 2017b). In particular, we ob-
serve adversarial perturbations with negative inner prod-
uct with the gradient of the example, and deteriorating
overall correlation with the gradient direction as the scale
of perturbation increases.

All of this evidence points towards PGD being a univer-
sal adversary among first-order approaches, as we will see
next.

3.2. First-Order Bounded Adversaries

Our experiments show that the local maxima found by PGD
all have similar loss values, both for normally trained net-
works and adversarially trained networks. This concentra-
tion phenomenon suggests an intriguing view on the prob-
lem in which robustness against the PGD adversary yields
robustness against all first-order adversaries, i.e., attacks
that rely only on first-order information. As long as the ad-
versary only uses gradients of the loss function with respect
to the input, we conjecture that it will not find significantly
better local maxima than PGD. We give more experimen-
tal evidence for this hypothesis in Section 5: if we train a
network to be robust against PGD adversaries, it becomes
robust against a wide range of other attacks as well.

Of course, our exploration with PGD does not preclude the
existence of some isolated maxima with much larger func-
tion value. However, our experiments suggest that such
better local maxima are hard to find with first order meth-
ods: even a large number of random restarts did not find
function values with significantly different loss values. In-
corporating the computational power of the adversary into
the attack model should be reminiscent of the notion of
polynomially bounded adversary that is a cornerstone of
modern cryptography. There, this classic attack model al-
lows the adversary to only solve problems that require at
most polynomial computation time. Here, we employ an
optimization-based view on the power of the adversary as
it is more suitable in the context of machine learning. After
all, we have not yet developed a thorough understanding
of the computational complexity of many recent machine
learning problems. However, the vast majority of optimiza-
tion problems in ML is solved with first-order methods,
and variants of SGD are the most effective way of train-
ing deep learning models in particular. Hence we believe
that the class of attacks relying on first-order information
is, in some sense, universal for the current practice of deep
learning.

Put together, these two ideas chart the way towards ma-

chine learning models with guaranteed robustness. If we
train the network to be robust against PGD adversaries, it
will be robust against a wide range of attacks that encom-
passes all current approaches.

In fact, this robustness guarantee would become even
stronger in the context of transfer attacks, i.e., attacks in
which the adversary does not have a direct access to the
target network. Instead, the adversary only has less spe-
cific information such as the (rough) model architecture
and the training data set. One can view this attack model
as an example of “zero order” attacks, i.e., attacks in which
the adversary has no direct access to the classifier and is
only able to evaluate it on chosen examples without gradi-
ent feedback.

3.3. Descent Directions for Adversarial Training

The preceding discussion suggests that the inner optimiza-
tion problem can be successfully solved by applying PGD.
In order to train adversarially robust networks, we also need
to solve the outer optimization problem of the saddle point
formulation (1), that is find model parameters that mini-
mize the “adversarial loss”, the value of the inner maxi-
mization problem.

In the context of training neural networks, the main method
for minimizing the loss function is Stochastic Gradient De-
scent (SGD). A natural way of computing the gradient of
the outer problem, ∇θρ(θ), is computing the gradient of
the loss function at a maximizer of the inner problem. This
corresponds to replacing the input points by their corre-
sponding adversarial perturbations and normally training
the network on the perturbed input. A priori, it is not clear
that this is a valid descent direction for the saddle point
problem. However, for the case of continuously differen-
tiable functions, Danskin’s theorem –a classic theorem in
optimization– states this is indeed true and gradients at in-
ner maximizers corresponds to descent directions for the
saddle point problem.

Despite the fact that the exact assumptions of Danskin’s
theorem do not hold for our problem (the function is not
continuously differentiable due to ReLU and max-pooling
units, and we are only computing approximate maximizers
of the inner problem), our experiments suggest that we can
still use these gradients to optimize our problem. By apply-
ing SGD using the gradient of the loss at adversarial exam-
ples we can consistently reduce the loss of the saddle point
problem during training, as can be seen in Figure 4. These
observations suggest that we reliably optimize the saddle
point formulation (1) and thus train robust classifiers.
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4. Network Capacity and Adversarial
Robustness

Solving the problem from Equation (1) successfully is not
sufficient to guarantee robust and accurate classification.
We need to also argue that the value of the problem (i.e. the
final loss we achieve against adversarial examples) is small,
thus providing guarantees for the performance of our clas-
sifier. In particular, achieving a value of zero corresponds
to a perfect classifier, which is robust to adversarial inputs.

For a fixed set S of possible perturbations, the value of
the problem is entirely dependent on the architecture of the
classifier we are learning. Consequently, the architectural
capacity of the model becomes a major factor affecting its
overall performance. At a high level, classifying examples
in a robust way requires a stronger classifier, since the pres-
ence of adversarial examples changes the decision bound-
ary of the problem to a more complicated one.

Our experiments verify that capacity is crucial for robust-
ness, as well as for the ability to successfully train against
strong adversaries. For the MNIST dataset, we consider
a simple convolutional network and study how its behav-
ior changes against different adversaries as we keep dou-
bling the number of convolutional filters and the size of
the fully connected layer. The initial network has a con-
volutional layer with 2 filters, followed by another convo-
lutional layer with 4 filters, and a fully connected hidden
layer with 8 units. Convolutional layers are followed by
2×2 max-pooling layers and adversarial examples are con-
structed with ε = 0.1. The results are in Figure 3.

For the CIFAR10 dataset, we used the Resnet model (He
et al., 2016; TFM). We performed data augmentation using
random crops and flips, as well as per image standariza-
tion. To increase the capacity, we modified the network
incorporating wider layers by a factor of 10. This results in
a network with 5 residual units with (16, 160, 320, 640) fil-
ters each. This network can achieve an accuracy of 95.2%
when trained with natural examples. Adversarial examples
were constructed with ε = 8. Capacity results for ε = 8
are in Figure 3. We observe the following phenomena:

Capacity alone helps. We observe that increasing the ca-
pacity of the network when training using only natural ex-
amples (apart from increasing accuracy on these examples)
increases the robustness against one-step perturbations sig-
nificantly. Moreover we notice that training the model for a
long time (much longer than required to achieve good accu-
racy on the eval set) significantly increases its performance
on adversarial inputs.

Even weak adversaries benefit robustness. When train-
ing the network using adversarial examples generated with
the FGSM, we observe robustness of the network against

one-step attacks, and we additionally observe an increase
in the robustness against iterative methods of attack when
ε is small (we didn’t observe this for ε = 8 on CIFAR10).
This agrees with our intuition that one-step methods can
find approximate solution to the inner maximization prob-
lem in the regime when the loss behaves linearly.

Weak models may fail to converge. In the case of small
capacity networks, attempting to train against strong adver-
saries (PGD) fails to reach convergence and results in net-
works of poor performance, even when the network suc-
cessfully converges with natural training. The small ca-
pacity of the network forces the optimization to sacrifice
performance on natural examples in an attempt to fit the
adversarial inputs. This behavior has a profound effect on
cases where label leaking is observed, i.e. the network can
overfit to the examples produced by a (weak) adversary and
perform well on them while performing worse on the orig-
inal images. Label leaking behavior is therefore suggestive
of insufficient capacity.

The value of the saddle point problem decreases as we
increase the capacity. Fixing an adversary model, and
training against it, the value of (1) drops as capacity in-
creases, indicating the the model can fit the adversarial ex-
amples increasingly well.

More capacity and stronger adversaries decrease trans-
ferability. Either increasing the capacity of the network,
or using a stronger method for the inner optimization prob-
lem reduces the effectiveness of transferred adversarial in-
puts. We validate this experimentally by observing that
the correlation between gradients from the source and the
transfer network, becomes less significant as capacity in-
creases. We describe our experiments in the full version of
the paper.

5. Experiments: Adversarially Robust Deep
Learning Models?

Following the understanding of the problem we developed
in previous sections, we can now apply our proposed ap-
proach to train robust classifiers. As our experiments so
far demonstrated, we need to focus on two key elements:
a) train a sufficiently high capacity network, b) use the
strongest possible adversary.

For both MNIST and CIFAR10, the adversary of choice
will be projected gradient ascent starting from a random
perturbation around the natural example. This corresponds
to our notion of a ”complete” first-order adversary , an al-
gorithm that can efficiently maximize the loss of an exam-
ple using only first order information.

When training against the adversary, we observe a steady
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PGD 1.11 0.0218
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Figure 3. The effect of network capacity on the performance of
the network. The first 3 plots/tables of each data set show the
accuracy against different adversaries depending on the adversary
used during training. The last plot/table shows the final training
loss (on adversarial examples) as a function of capacity (the loss
is computed against the adversary used during training).

decrease in the training loss of adversarial examples, il-
lustrated in Figure 4. This behavior indicates that we are
indeed successfully solving our original optimization prob-
lem during training.

We evaluate the trained models against a range of adver-
saries. We illustrate our results in Table 1 for MNIST and
Table 2 for CIFAR10. The adversaries we consider are:

• White-box attacks with PGD for a different number of
of iterations and restarts, denoted by source A.

• White-box attacks from (Carlini & Wagner, 2016b).
We use their suggested loss function and minimize it
using PGD. This is denoted as CW, where the cor-
responding attack with a high confidence parameter
(κ = 50) is denoted as CW+.

• Black-box attacks from an independently trained copy
of the network, denoted A’.

• Black-box attacks from a version of the same network
trained only on natural examples, denoted Anat.

• Black-box attacks from a different convolution archi-
tecture, denoted B, described in (Tramèr et al., 2017a).

MNIST. Guided by our observations on Figure 2, we run
40 iterations of projected gradient ascent as our adversary,
with a step size of 0.01 (we choose to take gradient steps in
the `∞ norm, i.e. adding the sign of the gradient, since this
makes the choice of the step size simpler). We train and
evaluate against perturbations of size ε = 0.3. We use a
network consisting of two convolutional layers with 32 and
64 filters respectively, each followed by 2×2 max-pooling,
and a fully connected layer of size 1024. When trained with
natural examples, this network reaches 99.2% accuracy on
the evaluation set. However, when evaluating on examples
perturbed with FGSM the accuracy drops to 6.4%.

method #steps restarts source accuracy
natural - - - 98.8%
FGSM - - A 95.6%
PGD 40 1 A 93.2%
PGD 100 1 A 91.8%
PGD 40 20 A 90.4%
PGD 100 20 A 89.3%
targeted 40 1 A 92.7%
CW 40 1 A 94.0%
CW+ 40 1 A 93.9%
FGSM - - A’ 96.8%
PGD 40 1 A’ 96.0%
PGD 100 20 A’ 95.7%
CW 40 1 A’ 97.0%
CW+ 40 1 A’ 96.4%
FGSM - - B 95.4%
PGD 40 1 B 96.4%
CW - - B 95.7%

Table 1. MNIST: Performance of the adversarially trained net-
work against different adversaries for ε = 0.3. For each model of
attack (white-box, black-box, black-box from different architec-
ture) we show the most successful attack with bold.

CIFAR10. For the CIFAR10 dataset, we use the two ar-
chitectures described in 4 (the original Resnet and its 10x
wider variant). We trained the network against a PGD ad-
versary with `∞ projected gradient descent again, this time
using 7 steps of size 2, and a total ε = 8. For our hardest
adversary we chose 20 steps with the same settings, since
other hyperparameter choices didn’t offer a significant de-
crease in accuracy. The results of our experiments appear
in Table 2.
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Figure 4. Training loss of adversarial examples during the training
of the networks. The sharp drops in the CIFAR10 plot correspond
to decreases in step size.

method ε #steps source accuracy
natural - - - 87.3%
FGSM 8 - A 56.1%
PGD 8 7 A 50.0%
PGD 8 20 A 45.8%
CW 8 30 A 46.8%
FGSM 8 - A’ 67.0%
PGD 8 7 A’ 64.2%
CW 8 30 A’ 78.7%
FGSM 8 - Anat 85.6%
PGD 8 7 Anat 86.0%

Table 2. CIFAR10: Performance of the adversarially trained net-
work against different adversaries. For each type of attack (black-
box, white-box) we show the most effective attack in bold.

The adversarial robustness of our network is significant,
given the power of iterative adversaries, but still far from
satisfactory. We believe that these results can be improved
by further pushing along these directions, and training net-
works of larger capacity.

6. Related Work
Due to the growing body of work on adversarial exam-
ples (Gu & Rigazio, 2014; Fawzi et al., 2015; Torkamani,
2016; Papernot et al., 2016; Carlini & Wagner, 2016a;
Tramèr et al., 2017b; Goodfellow et al., 2014; Kurakin
et al., 2016), we focus only on the most related papers here.
Before we compare our contributions, we remark that ro-
bust optimization has been studied outside deep learning
for multiple decades. We refer the reader to (Ben-Tal et al.,
2009) for an overview of this field.

Recent work on adversarial training on ImageNet also ob-
served that the model capacity is important for adversar-
ial training (Kurakin et al., 2016). In contrast to this pa-
per, we find that training against multi-step methods (PGD)
does lead to resistance against such adversaries. Moreover,
we study the loss landscape of the saddle point problem in
more detail.

In (Huang et al., 2015b) and (Shaham et al., 2015) a version
of the min-max optimization problem is also considered
for adversarial training. There are, however, three impor-
tant differences between the formerly mentioned result and
the present paper. Firstly, the authors claim that the inner
maximization problem can be difficult to solve, whereas
we explore the loss surface in more detail and find that
randomly re-started projected gradient descent often con-
verges to solutions with comparable quality. This shows
that it is possible to obtain sufficiently good solutions to the
inner maximization problem, which offers good evidence
that deep neural network can be immunized against ad-
versarial examples. Secondly, they consider only one-step
adversaries, while we work with multi-step methods. Ad-
ditionally, while the experiments in (Shaham et al., 2015)
produce promising results, they are only evaluated against
FGSM. However, FGSM-only evaluations are not fully re-
liable. One evidence for that is that (Shaham et al., 2015)
reports 70% accuracy for ε = 0.7, but any adversary that
is allowed to perturb each pixel by more than 0.5 can con-
struct a uniformly gray image, thus fooling any classifier.

A more recent paper (Tramèr et al., 2017b) also explores
the transferability phenomenon. The authors propose a lin-
ear algebraic notion of adversarial subspaces. In our ex-
periments, we find that larger model capacity and adversar-
ial training reduces the transferability of adversarial exam-
ples. Moreover, we explore how the adversarial loss be-
haves along random directions. Overall, our experiments
show that the structure of adversarial examples cannot be
described fully by the linear subspace view.

7. Conclusion
Our findings provide evidence that deep neural networks
can be made resistant to adversarial attacks. As our the-
ory and experiments indicate, we can design reliable ad-
versarial training methods. One of the key insights behind
this is the unexpectedly regular structure of the underly-
ing optimization task: even though the relevant problem
corresponds to the maximization of a highly non-concave
function with many distinct local maxima, their values are
highly concentrated. Overall, our findings give us hope that
adversarially robust deep learning models may be within
current reach.

For the MNIST dataset, our networks are very robust,
achieving high accuracy for a wide range of powerful ad-
versaries and large perturbations. Our experiments on CI-
FAR10 have not reached the same level of performance yet.
However, our results already show that our techniques lead
to significant increase in the robustness of the network. We
believe that further exploring this direction will lead to ad-
versarially robust networks for this dataset.
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